
Inhaltsverzeichnis
Version history...1
Server access..1
Operations..2
Mediation, Transformation and Orchestration...4
Client development..5
Example PHP Client..5

Mustangserver Hello World..5
Preparations..5
Allowing Client Credentials...7
Get access token...8

 OAuth2 Authentication and Validation of electronic invoices...15
Postman..17
Jmeter...20
Terms of service...23

Test terms..23
Production terms...23

Version history

0.7.0 on 2023-01-19 by Jochen.

0.8.0 on 2023-02-25 by Jochen: Added Mustangserver 0.8.0 (=Order-X)

Server access
Access to the web interface is possible via https://api.usegroup.de/. Terms of service are listed in the
chapter Terms of service on page 23.

To register please access https://api.usegroup.de:9443/devportal/services/configs
and click "Create Account" link on the bottom left. Select a username, "Proceed to self register",
enter the rest of the data and have your email verified.
Afterwards you can login on https://api.usegroup.de .

If you select the desired Mustangserver version and click on the blue "try out" button (not the link
in the navigation) on the next page you should be able to click a "get test key" button.

Page 1 of 23

https://api.usegroup.de/
https://api.usegroup.de:9443/devportal/services/configs
https://api.usegroup.de/

e.g. when you open the "ping" operation and click "try it out" and "execute" you should get a
"pong" response.

Operations
The available operations are

• ping: Just a test, always just returns „pong“. The only operation acessible via HTTP GET,
the rest is POST.

• validate: Validate a Factur-X/ZUGFeRD or XRechnung CII or Order-X-CIO File using
Mustang’s validator. Requires a file and returns a XML report. The format to be validated
against will be read from it’s guideline ID.

• phive: Validate a CII or UBL file using https://github.com/phax/phive . Requires a VES ID
and a file and returns JSON.

Available VES IDs are

Page 2 of 23

https://github.com/phax/phive

de.xrechnung:cii:1.2.0
de.xrechnung:cii:1.2.1
de.xrechnung:cii:1.2.2
de.xrechnung:cii:2.0.0
de.xrechnung:cii:2.0.1
de.xrechnung:cii:2.1.1
de.xrechnung:cii:2.2.0
de.xrechnung:ubl-creditnote:1.2.0
de.xrechnung:ubl-creditnote:1.2.1
de.xrechnung:ubl-creditnote:1.2.2
de.xrechnung:ubl-creditnote:2.0.0
de.xrechnung:ubl-creditnote:2.0.1
de.xrechnung:ubl-creditnote:2.1.1
de.xrechnung:ubl-creditnote:2.2.0
de.xrechnung:ubl-invoice:1.2.0
de.xrechnung:ubl-invoice:1.2.1
de.xrechnung:ubl-invoice:1.2.2
de.xrechnung:ubl-invoice:2.0.0
de.xrechnung:ubl-invoice:2.0.1
de.xrechnung:ubl-invoice:2.1.1
de.xrechnung:ubl-invoice:2.2.0
eu.cen.en16931:cii:1.0.0
eu.cen.en16931:cii:1.1.0
eu.cen.en16931:cii:1.2.0
eu.cen.en16931:cii:1.2.1
eu.cen.en16931:cii:1.2.3
eu.cen.en16931:cii:1.3.0
eu.cen.en16931:cii:1.3.1
eu.cen.en16931:cii:1.3.2
eu.cen.en16931:cii:1.3.3
eu.cen.en16931:cii:1.3.4
eu.cen.en16931:cii:1.3.5
eu.cen.en16931:cii:1.3.6
eu.cen.en16931:cii:1.3.6a
eu.cen.en16931:cii:1.3.7
eu.cen.en16931:cii:1.3.8
eu.cen.en16931:ubl-creditnote:1.0.0
eu.cen.en16931:ubl-creditnote:1.1.0
eu.cen.en16931:ubl-creditnote:1.2.0
eu.cen.en16931:ubl-creditnote:1.2.1
eu.cen.en16931:ubl-creditnote:1.2.3
eu.cen.en16931:ubl-creditnote:1.3.0
eu.cen.en16931:ubl-creditnote:1.3.1
eu.cen.en16931:ubl-creditnote:1.3.2
eu.cen.en16931:ubl-creditnote:1.3.3
eu.cen.en16931:ubl-creditnote:1.3.4
eu.cen.en16931:ubl-creditnote:1.3.5
eu.cen.en16931:ubl-creditnote:1.3.6
eu.cen.en16931:ubl-creditnote:1.3.6a
eu.cen.en16931:ubl-creditnote:1.3.7
eu.cen.en16931:ubl-creditnote:1.3.8
eu.cen.en16931:ubl:1.0.0
eu.cen.en16931:ubl:1.1.0

eu.cen.en16931:ubl:1.2.0
eu.cen.en16931:ubl:1.2.1
eu.cen.en16931:ubl:1.2.3
eu.cen.en16931:ubl:1.3.0
eu.cen.en16931:ubl:1.3.1
eu.cen.en16931:ubl:1.3.2
eu.cen.en16931:ubl:1.3.3
eu.cen.en16931:ubl:1.3.4
eu.cen.en16931:ubl:1.3.5
eu.cen.en16931:ubl:1.3.6
eu.cen.en16931:ubl:1.3.6a
eu.cen.en16931:ubl:1.3.7
eu.cen.en16931:ubl:1.3.8
eu.peppol.bis3.aunz.ubl:creditnote-self-
billing:1.0.6
eu.peppol.bis3.aunz.ubl:creditnote-self-
billing:1.0.7
eu.peppol.bis3.aunz.ubl:creditnote:1.0.6
eu.peppol.bis3.aunz.ubl:creditnote:1.0.7
eu.peppol.bis3.aunz.ubl:invoice-self-billing:1.0.6
eu.peppol.bis3.aunz.ubl:invoice-self-billing:1.0.7
eu.peppol.bis3.aunz.ubl:invoice:1.0.6
eu.peppol.bis3.aunz.ubl:invoice:1.0.7
eu.peppol.bis3.sg.ubl:creditnote:1.0.2
eu.peppol.bis3.sg.ubl:creditnote:1.0.3
eu.peppol.bis3.sg.ubl:invoice:1.0.2
eu.peppol.bis3.sg.ubl:invoice:1.0.3
eu.peppol.bis3:catalogue-response:3.13.0
eu.peppol.bis3:catalogue-response:3.14.0
eu.peppol.bis3:catalogue:3.13.0
eu.peppol.bis3:catalogue:3.14.0
eu.peppol.bis3:creditnote:3.13.0
eu.peppol.bis3:creditnote:3.14.0
eu.peppol.bis3:despatch-advice:3.13.0
eu.peppol.bis3:despatch-advice:3.14.0
eu.peppol.bis3:invoice-cii:3.14.0
eu.peppol.bis3:invoice-message-response:3.13.0
eu.peppol.bis3:invoice-message-response:3.14.0
eu.peppol.bis3:invoice:3.13.0
eu.peppol.bis3:invoice:3.14.0
eu.peppol.bis3:mlr:3.13.0
eu.peppol.bis3:mlr:3.14.0
eu.peppol.bis3:order-agreement:3.13.0
eu.peppol.bis3:order-agreement:3.14.0
eu.peppol.bis3:order-response:3.13.0
eu.peppol.bis3:order-response:3.14.0
eu.peppol.bis3:order:3.13.0
eu.peppol.bis3:order:3.14.0
eu.peppol.bis3:punch-out:3.13.0
eu.peppol.bis3:punch-out:3.14.0
eu.peppol.directory:businesscard:1.0.0
eu.peppol.directory:businesscard:2.0.0
eu.peppol.directory:businesscard:3.0.0

• pdf: Create a PDF/A file from any input PDF. Requires a PDF file (plain PDF, PDF A/1,
PDF/A-3 or PDF/X). This operation will remove all non-PDF/A features as well as any
embedded files, including potentially available Factur-X/ZUGFeRD files, and embed only
available fonts.

Page 3 of 23

• parse: Read a Factur-X/ZUGFeRD/XRechnung and create a JSON representation. Requires
a Factur-X or Order-X file.

• Invoice2xml: Convert a Factur-X/ZUGFeRD/XRechnung JSON representation to XML.
Requires a input JSON string, a standard (ZUGFeRD = zf, XRechnung = xr, Factur-X = fx
or Order-X=ox), a version (usually 2 for ZUGFeRD and 1 for Factur-X) and a profile
("MINIMUM","BASICWL","BASIC","EN16931","EXTENDED" or "XRECHNUNG"
for Factur-X, for ZUGFeRD 1 "BASIC","COMFORT" or "EXTENDED"). For XRechnung
only "XRECHNUNG".

• extract: Extracts just the XML (not as JSON like parse) from a Factur-X/ZUGFeRD/Order-
X file.

• combineXML: Combines CII XML and a PDF/A-1 document to a Factur-X/ZUGFeRD
PDF/A-3 document. Requires a input PDF/A-1 file and a standard (ZUGFeRD = zf, Factur-
X = fx or Order-X = ox), a version (usually 2 for ZUGFeRD and 1 for Factur-X) and a
profile ("MINIMUM","BASICWL","BASIC","EN16931","EXTENDED" or
"XRECHNUNG"
for Factur-X, for ZUGFeRD 1 "BASIC","COMFORT" or "EXTENDED").

• cii2ubl: transforms XML from the UN/CEFACT Cross Industry Invoice (CII) XML format,
the basis of factur-x/ZUGFeRD and the CII version of the XRechnung, to the Universal
Business Language format, UBL. Requires a CII string.

Mediation, Transformation and Orchestration
The http://api.usegroup.de/ uses WSO² as API management which in turn uses Apache Synapse
(https://synapse.apache.org/) for mediation/transformation/orchestration. This means that mediation
and orchestration can be developed e.g. in WSO²‘s Integration Studio
(https://wso2.com/integration/integration-studio/) and uploaded as XML file. Apart from acting as a
load balancer and central authentication this allow to

• override certain states in the process, e.g. implement a timeout after a certain number of
seconds

• invoke a chain of operations in only one virtual endpoint, e.g. conversion from plain PDF,
parallely converting invoice data to XML, merging PDF/A and XML and validation thereof
and/or

• map any custom specific input- or output parameter to the values used by Mustangserver
internally

Page 4 of 23

https://wso2.com/integration/integration-studio/
https://synapse.apache.org/
http://api.usegroup.de/

Client development
For all clients outlined in this document Oauth’s client credentials will be used. Before first use you
will have to enable client credentials in the applications tab,
https://api.usegroup.de:9443/devportal/applications Default Application, Oauth2 tokens. The
procedure is described more detailled in the PHP Client chapter „Allowing Client Credentials“ on
page 7 but is generic to all examples and does not apply for PHP only.

Please note that most clients will use the Mustangserver version which had been selected in the
backend when downloading the OpenAPI definition. New versions may be retired as soon as six
month after release of the successor. It is possible to always use the latest (more precisely:
recommended) version by removing the version from the endpoint:

Example PHP Client
This example operates in a PHP context but https://editor.swagger.io/ also allows

C#, Dart, HTML, Go, Java, Javascript, Kotlin, Python, R, Ruby, Scala, Swift and Typescript.

Mustangserver Hello World

Preparations

Screenshot 1:

#1. Log in on https://api.usegroup.de/devportal/ , select the latest Mustangserver API and download
the OpenAPI (=Swagger) definition of the API (->1.)
#2. Open the file in a text editor, select all and copy
#3. Go to editor.swagger.io, paste the definition and confirm conversion to yaml. Select Generate
Client|PHP (3.). The API is public so usually there is no need to create code in a private matter.
However, it is possible: Swagger editor is open source under the APL license
(https://github.com/swagger-api/swagger-editor) and e.g. a Docker Image can bei obtained from
https://registry.hub.docker.com/r/sebp/swagger-editor , i.e. using

Page 5 of 23

https://registry.hub.docker.com/r/sebp/swagger-editor
https://github.com/swagger-api/swagger-editor
https://api.usegroup.de/devportal/
https://editor.swagger.io/
https://api.usegroup.de:9443/devportal/applications

sudo docker run --rm -p 8080:8080 sebp/swagger-editor

to run locally via port 8080.

Screenshot 2:

#4. Extract the downloaded file, edit composer.json.
#5. change the name of the project in the composer.json file to lowercaps/lowercaps (5.)

Screenshot 3:

Page 6 of 23

#6. If you want to use PHP8+ upgrade the version number of php-cs-fixer to ^2.0. Then run
"composer install" in that directory.
#7. Copy the example from the "Getting started" section of the readme.md to a new file, called
index.php

Allowing Client Credentials

Screenshot 4:

Page 7 of 23

#8. Click on Applications (8.), Default Application,
#9. Production Keys/OAuth2 Token (9.).

#10. As preparation for Part B: Check Client Credentials and click the Update button on the bottom
of the page.

Get access token

#11. For this part we will use a token which will expire shortly. Click Generate Access Token (11.),
Generate and copy the resulting token. Paste it in

Screenshot 5:

Page 8 of 23

#12. index.php (12.), in the same file

#13. change ErrorController to Mustangcontroller (13.) and
#14. handle() to ping() (14.). Please note that usual PHP editors will give you code completion.
Now you can open resulting index.php via your server and PHP processort in your browser, it
should now look like Screenshot 6:

Part B: Sustainable OAuth2 Authentication and Validation of
electronic invoices

Back to Screenshot 4:

In index.php paste the following code

Page 9 of 23

$client = new GuzzleHttp\Client();
$res = $client->request('POST', 'https://gw.usegroup.de:9443/oauth2/token', [
 'auth' => ['<15.>', '<16.>'],
 'form_params' => [
 'grant_type' => 'client_credentials',
]
]);

$json = json_decode($res->getBody(), true);

Screenshot 7:

#15. copy Consumer Key (15., from screen 4) to the beginning of index.php (16.),

#17. reveal and copy Consumer Secret (18.).

#19 replace the static access token which will become invalid by $json["access_token"]

#20 Create or download a invoice to be validated, e.g.
https://www.mustangproject.org/files/MustangGnuaccountingBeispielRE-20201121_508.pdf and
save it as factur-x.pdf

#21 Change the method to validateFile and

Page 10 of 23

https://www.mustangproject.org/files/MustangGnuaccountingBeispielRE-20201121_508.pdf
https://gw.usegroup.de:9443/oauth2/token

#22 html escape the validation result, so that the result in the browser looks like screenshot 8:

That's it. Instead of displaying the XML you can now parse it :-)

Feel free to also try the async functions.

Screenshot 1:

#1. Log in on https://api.usegroup.de/devportal/ , select the latest Mustangserver API and download
the OpenAPI (=Swagger) definition of the API (->1.)
#2. Open the file in a text editor, select all and copy
#3. Go to editor.swagger.io, paste the definition and confirm conversion to yaml. Select Generate
Client|PHP (3.)

Screenshot 2:

Page 11 of 23

https://api.usegroup.de/devportal/

#4. Extract the downloaded file, edit composer.json.
#5. change the name of the project in the composer.json file to lowercaps/lowercaps (5.)

Screenshot 3:

Page 12 of 23

#6. If you want to use PHP8+ upgrade the version number of php-cs-fixer to ^2.0. Then run
"composer install" in that directory.
#7. Copy the example from the "Getting started" section of the readme.md to a new file, called
index.php

Screenshot 4:

Page 13 of 23

#8. Click on Applications (8.), Default Application,
#9. Production Keys/OAuth2 Token (9.).

#10. As preparation for Part B: Check Client Credentials and click the Update button on the bottom
of the page.
#11. For this part we will use a token which will expire shortly. Click Generate Access Token (11.),
Generate and copy the resulting token. Paste it in

Screenshot 5:

Page 14 of 23

#12. index.php (12.), in the same file

#13. change ErrorController to Mustangcontroller (13.) and
#14. handle() to ping() (14.). Please note that usual PHP editors will give you code completion.
Now you can open resulting index.php via your server and PHP processort in your browser, it
should now look like Screenshot 6:

OAuth2 Authentication and Validation of electronic
invoices
Concerning Screenshot 4:
In index.php paste the following code

Page 15 of 23

$client = new GuzzleHttp\Client();
$res = $client->request('POST', 'https://gw.usegroup.de:9443/oauth2/token', [
 'auth' => ['<15.>', '<16.>'],
 'form_params' => [
 'grant_type' => 'client_credentials',
]
]);

$json = json_decode($res->getBody(), true);

Screenshot 7:

#15. copy Consumer Key (15., from screen 4) to the beginning of index.php (16.),

#17. reveal and copy Consumer Secret (18.).

#19 replace the static access token which will become invalid by $json["access_token"]

#20 Create or download a invoice to be validated, e.g.
https://www.mustangproject.org/files/MustangGnuaccountingBeispielRE-20201121_508.pdf and
save it as factur-x.pdf

#21 Change the method to validateFile and

Page 16 of 23

https://www.mustangproject.org/files/MustangGnuaccountingBeispielRE-20201121_508.pdf
https://gw.usegroup.de:9443/oauth2/token

#22 html escape the validation result, so that the result in the browser looks like screenshot 8:

That's it. Instead of displaying the XML you can now parse it.

Feel free to also try the async functions.

Postman
For this example, you will need enabled client credentials as described on page 7 in Allowing Client
Credentials.

Use Import|File|Upload Files to upload you Openapi.yaml file into a Mustangserver collection.

Add a request to https://gw.usegroup.de:9443/oauth2/token?grant_type=client_credentials and call it Token
Request. Postman will auto-detect the Parameter in the URL. Change the type to POST.

In Headers, add a new field Content-Type with application/json as its value.

The tab Authorization should be Basic auth with your client id and secret as username and
password. Once you click Send, an according access token should be submitted:

Page 17 of 23

Add

var jsonData = JSON.parse(responseBody);

pm.collectionVariables.set("token", jsonData.access_token);

console.log(jsonData.access_token);

In the „Tests“ tab and View|Show Postman Console (Alt+CTRL+C) . Once you click Send again
you should be able to see the access token also in the Console:

In the collection, click on the variables tab and add „token“ as a collection variable.

Page 18 of 23

You can now add the variable {{token}} as authorization to any request. The variable will be
available and the requests work after you click on „Send“ of the Token Request for the first time.

Please note that ping was answered by pong.

Where appropriate, e.g. in the validation endpoint, Postman will allow you to select files, this being
a valid factur-x:

Page 19 of 23

Jmeter
https://openapi-generator.tech/ supports a Jmeter export but that does not handle authentication so
this is a simple way to do some performance testing manually.

For this example, you will need enabled client credentials as described on page 7 in Allowing Client
Credentials.

In your Test plan, add a Thread Group with a Once Only controller. Below that, add a HTTP request
sampler, we’ll call it Token Request. This is how it is defined: Change protocol to https, method to
POST, add server name and port number, and add the path:

Base64encode your <consumer key>:<consumer secret> as described on the applications page of
the API management:

Page 20 of 23

https://openapi-generator.tech/

In Jmeter, below the Token request, add a HeaderManager with Basic Authorization as described:

And from the response, also below Token Request, extract the JSON value access token into a
Jmeter Variable access token using a JSON Extractor:

Page 21 of 23

Add a sampler View Result Tree to confirm the results and a debug sampler if you like (in the
results tree you will then be able to e.g. see the current variables when you click on the results of the
debug sampler).

Run|Start should give you green entries in the results tree.

Now we will set the ordinary authentication as header: add another Header Manager outside of the
Token request and add the variable as token, i.e. Authorization being Bearer ${access_token}

You can then add a simple ping request in the thread group

and e.g. a Response time graph.You can then set the Thread group loop count to infinite, start the
sampling and check the results tree. After a while the response time graph will look like this,
indicating the initial login took ~440ms and the usual response time to our „ping“ is ~20ms.

Page 22 of 23

Terms of service

Test terms

To test and evaluate the service a valid email address has to be provided. Unless otherwise agreed
(info@usegroup.de) test access is restricted to one account per legal entity, i.e. usually company.
This email address will also be used to send availability, information about the roadmap,
development and status with an expected maximum volume of one per week. You can terminate
your test phase by unsubscribing from the announcements newsletter list. After the signup, access
can then happen free of charge, with a limit of 1,000 operations/month, unless access is revoked by
usegroup. You are not allowed to share personal data (e.g. real invoice recipient’s names, addresses,
email addresses, bank credentials or real invoice contents). Access may be revoked because the
general test phase has ended, the test phase is over for a certain customer, or due to other terms
which do not need to be disclosed. Under this test terms we also do not guarantee the availability
nor the correctness of the service.

https://api.usegroup.de:9443/authenticationendpoint/privacy_policy.do

Production terms

To access Mustangserver productively including a data processing agreement a Mustang Pro license
is required. Further info can be obtained at https://www.mustangproject.org/pro/

Page 23 of 23

https://www.mustangproject.org/pro/?lang=de
https://api.usegroup.de:9443/authenticationendpoint/privacy_policy.do
mailto:info@usegroup.de

	Version history
	Server access
	Operations
	Mediation, Transformation and Orchestration
	Client development
	Example PHP Client
	Mustangserver Hello World
	Preparations
	Allowing Client Credentials
	Get access token

	OAuth2 Authentication and Validation of electronic invoices

	Postman
	Jmeter
	Terms of service
	Test terms
	Production terms

